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The bifurcation of steady periodic waves from irrotational inviscid streamflows is 
considered. Normalizing the flux Q to unity leaves two other natural quantities R 
(pressure head) and S (flowforce) to parameterize the wavetrain. In a well-known 
paper, Benjamin & Lighthill (1954) presented calculations within a cnoidal-wave 
theory which suggested that the corresponding values of R and S lie inside the 
cusped locus traced by the sub- and supercritical streamflows. This rule has been 
applied since to many other flow scenarios. In this paper, regular expansions for 
the streamfunction and profile are constructed for a wave forming on a subcritical 
stream and thence values for R and S are calculated. These describe, locally, how 
wave branches in (R,  S) parameter space point inside the streamflow cusp. Accurate 
numerics using a boundary-integral solver show how these constant-period branches 
extend globally and map out parameter space. The main result is to show that 
the large-amplitude branches for all steady Stokes’ waves lie surprisingly close to 
the subcritical stream branch. This has important consequences for the feasibility 
of undular bores (as opposed to hydraulic jumps) in obstructed flow. Moreover, 
the transition from the ‘long-wave region’ towards the ‘deep-water limit’ is char- 
acterized by an extreme geometry, both of the wave branches and how they sit 
inside each other. It is also shown that a single (Q, R, S) triple may represent 
more than one wave since the global branches can overlap in (R, S) parame- 
ter space. This non-uniqueness is not that associated with the known premature 
maxima of wave properties as functions of wave amplitude near waves of great- 
est height. 

1. Introduction 
A classical free-boundary problem arises from consideration of a two-dimensional 

steady inviscid incompressible flow over a horizontal plane. The upper (free) surface 
is taken to be at constant atmospheric pressure. The analysis of such a model has 
included investigation of the existence and nature of periodic solutions, and would 
hope to yield criteria describing the relative stability of flows (uniform stream or 
wave) in a sensible way. From an engineering perspective on channel flow, what 
is important is usually the maintenance of a smooth profile, for then walls can be 
built easily to prevent flooding, or the flux through the channel may be controlled. 
Thus we are led to finding an appropriate parameter space and locating where wave 
solutions lie. 
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field equation is thus 

where the independent variables are horizontal distance x and upwards vertical 
distance y .  The equations can be considered to arise from the three physical prin- 
ciples of conservation of mass, energy and momentum (flux). The mass or volume 
flux (denoted Q) will be set to unity, along with gravity, via a consistent non- 
dimensionalization ( 5  2). The flux appears explicitly in the kinetic condition at the 
upper free surface y = ~(x), x E R, 

(1.2) 

Equation (1.2) represents w being normalized by making it zero on the channel 
bottom so that tp(x,O) = 0, x E R. The extra condition on the wave surface (to 
compensate for its unknown location) is derived by integrating the Euler equations 
and is given by Bernoulli’s equation, 
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We state the equations for gravity waves in terms of the streamfunction y. The 

A I ~  = 0, (1.1) 

y(x,dx)) = Q = 1. 

The constant R, known as the pressure head, represents energy. There is a normal- 
ization of pressure p hidden in R since we take the external pressure acting on the 
fluid at the upper surface to be zero. 

Momentum (flux) in the x-direction is represented by the flowforce S. That is, S is 
the horizontal momentum flux of the fluid, modified with pressure and scaled by the 
density p, defined by (the horizontal velocity is u = y y )  

The three quantities Q, R and S have clear physical links. However, whilst Q and R 
have always been considered in progressive wave theory, S fell into disuse (until 
recently) after its introduction by Kelvin (1886). The definition of S is deceptive as it 
is easily shown to be constant in x by use of Bernoulli’s theorem in the interior and 
integration by parts. 

The flowforce S and its variants have been much studied recently by those who con- 
sider the Euler equations as an infinite-dimensional Hamiltonian system. The relevant 
literature is now large; see, for example Benjamin & Olver (1982), Olver (1982), Rad- 
der (1992), which consider a temporal Hamiltonian whilst Bridges (1992) describes a 
spatial Hamiltonian structure. Bridges (1992) shows that the spatial Hamiltonian can 
be completely described in terms of the energy and momentum fluxes. Also worthy 
of note are Benjamin (1984) and Mielke (1991). 

However, the attractions of an ‘energy’ us. ‘momentum (flux)’ representation are 
not just theoretical. From a practical viewpoint, it had been revived by Benjamin 
& Lighthill (1954, denoted hereafter by BL). The engineering paradigm transitions 
of the bore and sluice are easily identified in (R,  S) parameter space and are shown 
in figure 1. Despite the dual appeal of this parameter space, to our knowledge, the 
precise location in the (R,  S)-diagram of (large- and small-amplitude) waves has not 
appeared previously. This is the task we address in the paper. BL made various 
conjectures on this matter based on cnoidal-wave calculations, some of which were 
established by Keady & Norbury (1975, 1978). In figure 2, we show the published 
bounds. The hatched area shows the previously conjectured region in (R,  S) parameter 
space where all steady waves may lie. The streamflow boundaries were conjectured 
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FIGURE 1. Flow 
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FIGURE 2. Analytical bounds of Keady & Norbury (1975), waves and streamflows in the 
( R ,  S)-diagram. Hatched region shows the conjectured domain for all possible wave flows. 

by BL, and the large-amplitude wave bounds are due to Keady & Norbury (1975). 
Very recently, Benjamin (1995) has given an analytical argument which establishes the 
lower streamflow bound for monotone Stokes’ waves. Our orientation of the diagram 
is not that of BL, but is preferred to ease discussion of incipient-branch direction ( 5  3 )  
and in order that it more closely resembles a normal bifurcation diagram. Note that 
the bounds are, in fact, very weak: typical wave branches lie in an extremely narrow 
strip close to the subcritical branch. 

The wave branches are shown in greater detail in figure 3.  ( h p  is a mean wave 
depth, arising in the numerical method (§4), which is used in 5 5 to parameterize 
the investigation of bifurcation from the subcritical branch.) The envelope of these 
wave branches provides a ‘third barrier’ (upper bound) on the possible ‘wave drag’ 
(momentum flux loss) at constant energy (R) if an obstructed flow is to have down- 
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FIGURE 3. The irrotational ( R ,  S)-diagram and analytical bounds with wave branches 

for hp = 1.1, 1.2, 1.3, 1.4, 1.45, 1.5, 1.55, 1.6, 1.8 and 2.0. 

stream waves. What is clear is that, for most depths, if the momentum loss is greater 
than about a third of Ssub - Ssuper then an undular transition is not possible. Only a 
jump to the supercritical stream can be achieved. In fact, for the flowforce greater 
than say, S 2 1.59 (6% above critical), momentum loss in transitions from subcritical 
streams to wave flows cannot exceed (around) 20% of the loss involved in jumping 
to a supercritical stream. 

In Q 3, second-order regular perturbation series are constructed to locate the waves 
close to their onset in the (R,  S)-diagram. It is shown that, as expected, small- 
amplitude waves lie inside the cusped locus of streamflows. Such convictions have 
a long history. Ursell (1953) showed that for linearized flow theory to be applicable 
not only did ak and a/d  have to be small, but a /k2d3  as well (where a, k and d are 
suitable measures of amplitude, wavenumber and depth). By analysis of experimental 
data, BL noted that this last parameter combination was O(1) in bore transitions, 
indicating a balance of dispersive and steepening effects. Hence they constructed a 
cnoidal-wave theory whose novel feature was that all the coefficients in the governing 
amplitude equation were combinations of Q, R and S .  On the basis of calculations 
made for these cnoidal waves and physical considerations, it was conjectured that 
(for irrotational flows) all wavetrains are uniquely determined by their values of 
Q, R, and S ;  and moreover, if Q is held fixed, then R and S are constrained to lie 
between the values corresponding to the uniform streamflows. The work presented 
here confirms the latter conjecture but also shows that the former is not correct, 
in that for certain ranges of (R, S )  parameters, the loci of wave branches overlap 
(figures 8 and 9). Note that this is a different type of non-uniqueness to that associated 
with secondary bifurcation from the Stokes’ wave branch near maximum amplitude. 

Despite the status of results for changes in momentum flux and total head, as 
late as 1989 Dixon described a surprisingly ‘confused state of affairs’ concerning a 
problem (related to ours) arising in the study of the effect of stationary disturbances 
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on far downstream flow. De (1955) proposed a fifth-order Stokes expansion and 
plotted R and S values (to understandably limited accuracy) in a transformed plane, 
for a stream of volume flow Q. However, his choice of loci and parameters has 
been criticised (Fenton 1985; Dixon 1989) and, in fact, he assumes the BL conjecture 
in plotting those loci. In addition, since Schwartz (1974) it has been known that 
De’s approach based upon an expansion in the first Fourier coefficient is flawed. 
Moreover, Chappelear (1961) claimed, and Fenton (1985) identified, errors in De’s 
series expansions. Both Cokelet (1977) and Williams (1981) tabulate some R and S 
values, but Q is not fixed, and more importantly, the emphasis is on parameter values 
and profiles near the extreme Stokes’ 120” corner wave. The precise location of the 
complete wave branches in the (R, S)-diagram is not established in any of these 
papers, nor are the surprising results that we show in figure 2, for example, remarked 
upon. 

In $5, we fill this gap by presenting numerical calculations for the branches of 
waves in the (R, S)-plane with Q fixed, using the boundary-integral solver of Teles 
da Silva & Peregrine (1988), which those authors kindly supplied. We map out the 
changes in loci of constant-period wave branches in parameter space between the 
long-wave and deep-water regimes, and note how individual wave branches ‘sit inside’ 
each other. The main features are summarized by figure 3 in which the closeness of 
the wave branches to the subcritical stream, and the geometry of the transition in 
wave-branch shape from the ‘long-wave’ limit to the ‘deep-water’ region is clear. 

2. The governing equations 
The equations for plane gravity waves are derived from Euler’s equations for steady 

incompressible fluid flow. The Galilean invariance of the underlying equations means 
that the problem of a periodic wavetrain propagating without change of form can 
be viewed as steady motion by the addition of a horizontal velocity to the reference 
frame. Moreover, by considering coordinates in which one axis (say, the x-axis) is 
parallel to the direction of propagation, the problem becomes two-dimensional. Hence 
we consider Cartesian axes (x,y,z) with y as the vertical axis in the plane to which 
the problem has been reduced. We state the problem in terms of the streamfunction y 
defined in the usual way. For irrotational flow, y satisfies Laplace’s equation (1.1). 
The use of the streamfunction formulation leads to relatively simple expressions for 
the parameters of interest (compared to, say, De 1955). This advantage has already 
been exploited within cnoidal-wave theory by Fenton (1979). 

It remains to discuss the boundary conditions. We assume that the waves are of 
finite depth above a horizontal bottom at y = 0. In addition, if the free surface has a 
tangent nowhere vertical, it may be written as a single-valued function y = q(x). One 
deduces that y is equal to a constant Q, say, on the free surface, (1.2). It follows from 
the definition of y that we may take Q to be the volume flux of the channel flow. We 
assume Q > 0 (which implies that q is strictly positive), so that the apparent flow is 
from left to right, in the direction of x increasing. The dynamic boundary condition 
is derived by integrating Euler’s equations using the free-surface constant-pressure 
assumption, and is given by (1.3) for R, the total, or pressure, head. 

Let 2L be the wavelength of periodic waves arranged so that y~ is 2L-periodic, y 
is 2L-periodic in x and q’(fL) = 0. From periodicity considerations, we impose the 
boundary conditions 

Wx(fL, Y l  = 0, (2.1) 
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which ensure that the boundary value problem for y given q is well posed. For 
representation in the (R, S)-plane, we scale Q and g out of the problem (but the 
non-dimensional wavelength remains). Both are scaled to unity via 

y = QI), x = (Q2/g)1’32, (2.2) 
with y scaled as for x. Dropping hats, we obtain the following problem: find y(x,y), 
q ( x )  and L > 0 such that 

A y  = 0, x E (-L, +L), 0 < y < ~(x ) ,  (2.3) 
y(x,O) = 0, x E [--L,+L], (2.4) 

V,(kL,Y)  = 0, Y E [o,q(fL)I, (2.5) 
V(X, q(X)) = 1, X E [-L, +L1, (2.6) 

(2.7) 

We denote this as problem [P,]. Here L is a parameter, and we consider a branch of 
waves of varying amplitude and of fixed wavelength 2L. Along such a branch, R will 
vary and so will S, defined by (1.4) but more conveniently rewritten as 

iIVy(x, q(x))I2 + glq(x) = R = const, x E [-L, SL] .  

S = L‘(R - y - i y :  + $y?)dy, (2.8) 

by using Bernoulli’s theorem throughout the fluid to eliminate the pressure, and our 
scaling. The half-period L can be thought of as providing an extra axis in parameter 
space, parallel to which we project all solution branches onto the (R, S)-diagram. Our 
strategy is to solve (2.3)-(2.7) for y and q (given L)  and thus R. Then with such y 
and q ,  we find S corresponding to R. Note that at x = fL ,  (2.8) yields (using (2.5)) 

(2.9) S = Ry - L 2 + L Jv 
2 Y  2 0 +Y. 

In the next section, we do this analytically for small-amplitude waves. The reader 
who is only interested in the global branch behaviour should go immediately to 5 5. 

3. Perturbation theory in (R, S) parameter space 
In this section, we investigate the onset of gravity waves in (R, S) parameter 

space, local to the streamflow from which they bifurcate. One-dimensional streamflow 
solutions of (2.3)-(2.6) are given by @(y) = y / h ,  q = h, where h satisfies 

h2 1 1 
2 h’ 2h2 S h = - f -  R h = - + h .  

Both Rh and Sh have a unique minimizing depth h. = 1. The smaller (shallower) 
solution (for R, S > R,, S, = 3/2 respectively) is the supercritical flow depth h- 
and the larger (deeper) is the subcritical flow depth, h+ (Keady & Norbury 1975, 
1978). What we wish to determine is how the values of the pressure head R and the 
flowforce S for such waves compare to those Rh, Sh values for a streamflow. To do 
so, we calculate a weakly nonlinear solution by finding a second-order correction to 
the streamflow. 

as a (non-dimensional) perturbation parameter. This is a parameteri- 
zation related to amplitude along the curve in (R, S)-space that represents a wave 
branch. Globally, of course, such a parameterization is required because of the 
multi-valuedness of any functional dependence S = S(R) or R = R(S). The choice 
of this parameter c related, but not equal, to amplitude (within the streamfunction 

We use 
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formulation) is made for convenience. The unfolding of wave properties is then much 
more straightforward than with a more conventional approach. Our corrections are 
sufficiently simple that one can see explicitly their sign and the slope of the incipient 
wave branch (compare De 1955, for example). We discuss at the end of this sec- 
tion how to eliminate E to obtain R = R(S)  (or equivalently e in terms of physical 
parameters). 

We solve, at successive orders, (2.3)-(2.6) and then calculate from (2.7)-(2.8) the 
corrections to RjT and Sh, the head and flowforce, respectively, of the streamflow. The 
ansatz is 

I v ( x , Y )  = vo(y) + Evjl(X,y) + c * w , y )  + 0 ( ~ 3 ) ,  R = + f~~ + € 2 ~ ~  + OV), 
s = S, + €sI + € 2 ~ ~  + 0 ( € 3 ) .  M = h + e q l ( x )  + f2m) + w 3 ) ,  

(3.2) 
When we calculate the O(eo) solution, we recover the streamflow yo = y / h ,  y~, = h, 
&, = Rh and So = s h .  At first order, we have 

In order that R1 is independent of x, we have to impose the condition 

nh  n 
tanh - = __ 

L Lh2’ (3.4) 

which relates the possible period 2 L  to the stream depth h. Equation (3.4) is familiar 
as the dispersion relation arising in linearized water-wave theory for small-amplitude 
waves (see, for example, Bland 1988). We can only solve (3.4) if h > 1, that is, 
bifurcation of waves only occurs from the subcritical stream. It follows (after a 
similar calculation for S1) that both first-order corrections R1 and SI vanish. With 
hindsight, this comes as no surprise. The symmetries of the boundary conditions 
force this ‘pitchfork’ bifurcation so that odd-order corrections make no contribution 
to either parameter. 

If the required first-order terms are substituted into the second-order problem, we 
may solve to find that the second-order approximations to tp and q are 

2nh 2 n x  y 
y 2 ( x ,  y )  = 2 (1 - 7) sinh --cosech- cos - + -, 

4 L L L 2  (3.5) 
2nY 

h2 3L2h4 2 n x  
472(x) = 7 (7 - 1) cos - 

L 

After some algebra, it follows that the O(e2)  expression for R,,,, = R, is 

We conclude that R, > Rh. However, note that the bound is tight in the limit L -+ 0, 
which is equivalent to the deep-water limit in h. We now wish to estimate S, to second 
order. Using definition (2.8) of S, one can proceed by substitution of (3.2), (3.7) to 
find that, using (3.4), 

Therefore S, is bounded above SF,. Whilst both flowforce and pressure head increase 
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for the wave relative to the streamflow, it is still not settled whether the bifurcating 
branch remains in the streamflow ‘wedge’ or whether it escapes. 

To determine which case occurs, we compare the slopes of the streamflow and 
wave branch curves with respect to their parameterizations in the (R, S)-diagram at 
the point (Rh, SI,) where these intersect. We deduce that 

(dR/dS)h - 1 + 2h3(l - tanh2(dz/L)) 
(dR/dS), 2 + h3( 1 - tanh2(nh/L)) ’ 

- (3.9) 

One can show using elementary calculus and (3.4) that this fraction is less than 
unity for h in the range (1,co) = (h*,co). We conclude that the bifurcating branch 
always points into the streamflow wedge. These results are illustrated by some simple 
asymptotics. If the streamflow depth is close to the critical depth h, = 1 then we put 
h = 1 + p, p << 1. Then we have 

($) ‘v 1 + 0 ( p 2 ) ,  ($) - 1 - p + 0 ( p 2 ) .  
W h 

(3.10) 

At the other end of the streamflow branch, we set the small parameter p to be l / h  to 
deduce that 

(3.11) 

The ‘deep-water’ approximation (3.1 1) to (dR/dS), is tight in practice before 
h = 1.6. The second-order approximations indicate that the predicted angle of 
incursion into the wedge has a maximum at approximately h = 1.4 and diminishes 
both for long wavelengths, and (especially) for deep water. Of course, to predict 
the size and direction of any possible turnaround in the wave branch, we need to 
calculate to (at least) the fourth order within this streamfunction formulation. The 
algebra involved is cumbersome and as we see in 9 5 ,  the effects seem rather subtle and 
involved. Instead, we concentrate on numerical solutions to gain more information 
about where the waves live in parameter space and the shape of the branches. 

Before we move on, however, we return to the issue of the parameterization by E .  

To leading order, E is the wave amplitude. If one wishes to calculate only to second 
order, as we have done, an alternative approach would be to define E by 

R2e2 := R - R h ,  (3.12) 

ensuring that 0 < E << 1, and proceed in the obvious way to re-derive our results. 
Thus (3.7), (3.8) would imply that, to this order, 

1 + 2h3( 1 - tanh2(nh/L)) 
2 + h3( l  - tanh2(nh/L)) 

s, = Sh + h (Rw - Rh). (3.13) 

What we are doing here is, effectively, a series inversion. In fact, E could be removed 
iteratively at each even order of calculation by repeated series inversion in order to 
express E in terms of wave quantities, or equivalently yield R = R(S) .  This is the kind 
of procedure carried out numerically in Fenton (1979) for cnoidal waves, because 
his primary concern was the provision of practical numerical values rather than an 
investigation of a particular parameter space. 
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4. The method of Teles da Silva & Peregrine 
To complete our analysis of (R ,  S )  parameter space, we now present a range of 

large-amplitude solution branches (with different periods), traced out in parameter 
space as the waveheight increases towards the extreme wave. The points in (R,  S)- 
space were generated using a boundary-integral solver for the steady wave problem 
employed by Teles da Silva & Peregrine (1988). The numerical method of this scheme 
is based upon the work of Tanaka (1985, 1986) and Dold & Peregrine (1986). The 
wave problem is reduced to solving a nonlinear integro-differential equation posed 
on the upper boundary. Full details are given in the original paper. 

Before we proceed, we need to summarize the alternative physical setup used within 
the program. A reference frame is chosen in which the wave is at rest with y = 0 as 
an undisturbed stream depth and y = -h as the plane rigid bed. The water velocity u 
is given by 

(4.1) 
where @ is a velocity potential for the irrotational perturbation to a purely horizontal 
flow, and c, the wave velocity relative to the ‘original’ water velocity at the surface. 
That is, the perturbation velocity due to the wave at any point below a wave trough 
is chosen to be such that its phase average is zero and thus @ is periodic. Now @ 
satisfies Laplace’s equation (1.1) but the boundary condition on the bed y = -h is 
different in detail: 

Bernoulli’s theorem and the free surface constant-pressure condition is written as 

u = (@x - c, @J, 

@ y  = 0. (4.2) 

(4.3) 
In solving the equations numerically, Teles da Silva & Peregrine (1988) take the 
wavenumber k = 1 and gravity g = 1 so that the wavelength is 2n. Once convergence 
to a wave profile q has been attained, the program outputs c and B but, in particular, 
also evaluates the integral quantities ‘excess kinetic energy’, and ‘excess potential 
energy’ as given by 

#DX 1 - c)2 + $@; + g q  = B. 

2T = i2’ [@: + @$I dy dx, 2V = [ gq2dx = $” 1‘ 2gy dy dx . (4.4) 

We now describe how the output is translated into results in the (R, S)-plane. First, 
the relative scalings between the two non-dimensionalizations are determined. To 
transfer from the dimensional water wave model (o-subscripts) to the Teles da Silva 
& Peregrine setup (p-subscripts) requires the scalings 

112 L L 
x, = -x Tc Y o  = -YP, Tc Yo = (2) Y,, & = (F) R,, So = (2) S,. 

(4.5) 
For our model (D subscripts), recall the scales of $2:  

Now observe that flux scales as the streamfunction, and hence Qo = (L3g/n3)1/2Q,. 
Thus we may eliminate Qo upon equating expressions for variables in the dimensional 
formulation. Not forgetting translations, we obtain 

XD = Qp2I3xp, = Qp2l3yp, RD = Qi2l3Rp, SD = Q,“/’Sp. (4.7) 
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Suppose the program is executed in a regime away from extreme waves. In this case, 
three parameters are used: vorticity (which is zero in our case), wave height H ,  and 
mean water depth, h,. Typically, one follows a wave from close to its onset up towards 
an extreme waveform. As H is increased, c (and an internal parameter) are adjusted 
by the program in order that the mean water disturbance remains constant at its input 
value. Flat flows cannot be calculated since the Jacobian of the Newton solver for the 
discretized equations is then singular. Hence there is a difficulty in approaching the 
bifurcation point. Instead, bifurcation values of R and S are obtained from the usual 
dispersion relation. In order to plot (S, R)  pairs in our non-dimensionalization, it 
remains to relate those integral quantities directly evaluated by the program to those 
we wish to evaluate, namely R and S. The flux Q = Qp is defined by 

(-Q) := 1 (h. - c)dy. 
-h 

Integration between 0 and 27t yields 
T 

Qp = ch - L. 
71C 

(4.9) 

For pressure head, we just apply the scaling (4.7) to 

R, = B + h. (4.10) 

The definition of The flowforce calculation is more involved (see Doole 1994). 
flowforce becomes, using (2.8) 

(4.1 1) 

Integrating from 0 to 2n, we obtain after some manipulation 

(4.12) 
3 1 

271 2 
S, = 2Bh - --I/ + -gh2 .  

5. Numerical results for the irrotational (R,  S)-diagram 
The procedure to obtain numerical (R,  S) bifurcation diagrams is as follows. The 

program is run with input values in the p-non-dimensionalization as this is more 
convenient for investigative purposes. An initial depth h, is chosen along with 
a small wave height H ,  usually around We continue in the wave height 
parameter (directly or indirectly) towards the Stokes’ corner wave, with the corre- 
sponding values of Rp and S, being rescaled using Qp to give the output in our 
non-dimensionalization. Computations for this paper used generally 100 points per 
wave, with around 60 (S, R)  points per wave branch. A full discussion of accu- 
racy and error control is given in Doole (1994). Experimentation showed that the 
wave branches emanating from the depths shown in table 1 exhibit the full range 
of possible behaviours. In the table, we record the stream depth with respect to 
both non-dimensionalizations, the period of the bifurcating wave (which shows the 
variation expected from (3.4)), the (S, R)  bifurcation points and the height of the 
extreme wave. (In the non-dimensionalization of Teles da Silva & Peregrine 1988, the 
extreme wave height increases with h,.) 

There are many qualitative features which vary as the streamflow depth is increased 
by, say, 25% from its critical value. We begin close to the cusp with h, = 1.1, 1.2 
and 1.3. In figure 4, we show the corresponding ( R ,  S)-diagram. The branch leaves 
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h, 

1.1 
1.2 
1.21 
1.3 
1.4 
1.45 
1.48 
1.5 
1.505 
1.51 
1.52 
1.53 
1.54 
1.55 
1.6 
1.8 
2.0 
2.05 
2.1 
2.5 
3.0 

Stream, h~ Period, 2L Bifurcation Sb Bifurcation Rb Extreme height 

1.1 1175893 6.35035216 1.5175 1.5162 0.6452 
1.1290981 5 5.91 19441 1 1.5231 1.5212 0.63 15 
1.13085976 5.87223256 1.5237 1.5218 0.6300 
1.14689906 5.54321484 1.5296 1.5270 0.6169 
1.16503081 5.22864606 1.5370 1.5334 0.6018 
1.17418437 5.08801239 1.5410 1.5368 0.5944 
1.17969698 5.00828023 1.5435 1.5390 0.5898 
1.18337897 4.95692623 1.5452 1.5404 0.5865 
1,18430022 4.94430416 1.5457 1.5408 0.5859 
1.18522176 4.93176683 1.5461 1.5412 0.5852 
1.18706562 4.90694292 1.5470 1.5419 0.5837 
1.18891047 4.88244756 1.5479 1.5426 0.5822 
1.1907562 1 4.85827397 1.5488 1.5434 0.5806 
1.19260277 4.83441560 1.5497 1.5441 0.5791 
1.201 84484 4.71963365 1.5543 1.5480 0.5714 
1.23880752 4.32425400 1.5745 1.5646 0.5415 
1.27540127 4.00679126 1.5974 1.5828 0.5309 
1.28444884 3.93679392 1.6034 1.5875 0.5064 
1.29344635 3.86998244 1.6096 1.5923 0.4998 
1.3633191 5 3.42639473 1.6628 1.6323 0.4515 
1.44463487 3.02563618 1.7357 1.6842 0.4027 

TABLE 1. Parameter values for wave branches in the (R ,  S)-diagram. 

J 

FIGURE 4. The (R ,  S)-diagram for irrotational flow with h, = 1.1, 1.2 and 1.3. Tenths of extreme 
wave height as marked. 
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the streamflow locus with the onset of (sinusoidal) waves and wave height increases 
along the branch until the extreme wave is reached. The marked points correspond 
to 10% increments of extreme wave height. The first two branches are fairly evenly 
parameterized by wave height, whilst in this respect the h, = 1.3 branch appears more 
‘transitional’ (see later). Observe that the h, = 1.1 branch, for much of its length, 
is almost parallel to the wedge (in line with the long-wave theory of Doole 1994). 
Moreover, the subsequent branches lift up away from the streamflow in line with $3. 

Considering figure 4 as a bifurcation diagram, it may seem strange that the bifur- 
cating curves just ‘stop’, in apparent contradiction of Rabinowitz’s Global Bifurcation 
Theorem. However, the problem is not a ‘loss of compactness’, but rather that R and 
S are first-derivative ‘measures’ (norms) of the wave. It is the second derivative of 
the wave profile that experiences a singularity at the Stokes’ corner wave and hence 
there is no discrepancy. 

If we now focus on h, ,= 1.3 (figure 5) ,  we observe two kinds of fold. The first is that 
associated with the maximum value of S (greater than the bifurcation value S b ) .  The 
second fold at the end of the wave branch is a feature common to all branches, but 
we describe its cause now. Until the decade 1972-1982, many benevolent properties 
were assumed for water waves, for instance uniqueness of periodic waves. It was only 
as steep waves were calculated much more accurately that unexpected phenomena 
were revealed. Prime amongst these was the discovery that the maxima of ‘important 
integral properties’ do not occur at the extreme wave. The highest value of such 
quantities actually occurs at around 85% of the extreme wave height. Moreover, the 
wave properties then go through a decaying oscillation as the extreme wave limit is 
approached. However, these oscillations decay so fast as a function of wave height 
that it seems beyond double precision computations to resolve more than three of 
them. (An exception is the recent, precise work of Chandler & Graham 1993.) Two 
points are worth noting. By plotting R against S, the uneven parameterization of 
the curves by H ,  as well as the required scale, obscures the number of oscillations 
actually present in the data. In addition, the plotting of several oscillations, though 
achievable with the code (Teles da Silva & Peregrine 1988; Doole 1994), is not the 
main thrust of the work. The global branch behaviour is of much greater importance. 

The phenomenon of premature maxima was discovered by Schwartz (1974) and 
Longuet-Higgins (1975) and accurately numerically plotted by continuation in Chen 
& Saffman (1980). The phenomena very close to the extreme wave were first described 
(with matched asymptotics) by Longuet-Higgins & Fox (1978). The maximum point 
has been associated with mechanisms for instability, bifurcation and wave breaking 
(reviewed by Jillians 1989, for example). In the above references, the main emphasis 
is on c, T / V  and so on. However, the same behaviour is exhibited by R and S .  
Consequently, when plotted against each other, a ‘spiral’ results. However, the 
continuation of the spiral beyond our current ability to resolve it, will depend on 
whether the oscillations of R and S remain out of phase. These remarks raise 
the possibility of another kind of non-uniqueness in the (R,  S)-diagram. At high 
wave steepness, successive secondary subharmonic bifurcations occur (as discovered 
by Chen & Saffman 1980; and organized since into a theory by Aston 1991 and 
Baesens & Mackay 1992). These give rise to branches terminating at lower wave 
heights but with similar oscillatory behaviour in integral properties. In (R ,  S)- 
space, this could lead to the intersection of individual spirals and hence multimode 
interactions close to the extreme wave. However, symmetric bifurcation theory may 
be able to exclude this (cf. Aston’s 1991 analysis of the conjectures of Jones & 
Toland 1985, 1986). 
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FIGURE 5. Focus on the h, = 1.3 wave branch in the (R, S)-diagram. (a )  Computed points shown. 

(b)  Close-up of the terminal branch fold. 

In figure 6, we see that the other extreme ( h p  = 1.8, 2.0 and 2.5) is quite different: 
the branches ‘point’ in the opposite direction. The labels indicate ‘tenths’ of extreme 
wave height as before. At the resolution of figure 6, it appears that the branches 
do not initially increase their R and S values. In fact, the curves of figure 6 have 
flipped over the vertical very rapidly and the effect of the exponential deep-water 
limit is to compress this fold onto the streamflow cusp. Resolution of the flip-over 
needs wave heights of the order of lop5 for which the variation in R and S cannot 
be computed in a sufficiently robust and reliable manner. We will see how the fold 
shrinks down to the streamflow locus in other figures. Of course, such a feature is 
only of theoretical interest, since for such wave heights, any practical theory should 
include surface tension effects and/or viscous dissipation. 
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1.56 1.58 1.60 1.62 1.64 1.66 

Flowforce, S 
FIGURE 6. The (R,  S)-diagram for irrotational flow with h, = 1.8, 2.0 and 2.5. Tenths of extreme 

wave height as marked. 

Therefore, between h, = 1.3 and k, = 1.8, a dramatic transition must take place. 
Visually, the main changes occur between h, = 1.45 and h, = 1.55 (figures 7 and 8). 
The branch buckles over prior to stretching out again for deep water. It appears that 
it is the part of the branch corresponding to small wave heights that is ‘compressed’, 
since the parameterization indicated by the 10% markers is now most uneven. 
However, once h, = 1.6, branch shape differs little from those of figure 6. Note 
that at approximately the same depth, the nature of the graphs of the second-order 
corrections changes significantly. 

In figures 7 and 8, we see that the loci do not sit inside each other in a simple 
way. Branches corresponding to different periods can cross and thus a new type of 
non-uniqueness appears. In this transition zone, the intersections can occur some 
distance up the branch. In figure 9, we look at how this changes in the two extremes 
of the long-wave and deep-water regimes. In both, the crossings tend to be closer 
to the terminal (R ,  S)-values. The branch length compression during the transition 
of behaviour can be clearly seen in the summary, figure 3. In the same figure, we 
have plotted the analytical bounds of Keady & Norbury (1975, 1978) for a periodic 
wavetrain. From the diagram, we can see that the bounds are not tight. However, the 
influence of the upper bound is apparent. Long-wave theory (Doole 1994) indicates 
that wave branches like that emanating with h, = 1.1 cannot fold inside the region 
where the theory remains applicable, hence the shape and direction of such branches. 
However, as we move away from the cusp, the influence of the upper bound becomes 
dominant and forces wave branches to turn. In passing, we note that the fact 
that all the branches fold undermines a remark of BL. Waves lie on both sides of 
the curve corresponding to the waves of greatest height. Keady & Norbury (1978) 
reported a personal communication of E. D. Cokelet in 1976 stating that his steep 
wave solutions (Cokelet 1977) also had this property. However, the upper bound 
of Keady & Norbury in figure 3 has the properties of Benjamin & Lighthill’s ‘third 
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Flowforce, S 

Flowforce, S 
FIGURE 9. Intersection of wave branches ( a )  closer to the cusp and (b )  in the ‘deep-water’ region. 

line completing the (R,  S)-diagram’. The reason for Benjamin & Lighthill’s error 
was probably the (then-unsuspected) existence of ‘premature’ maxima in the integral 
properties of water waves. 

Two other features are clear from figure 3. First, that the large-amplitude branches 
remain remarkably close to the subcritical stream branch and secondly, that it is 
only the cnoidal-wave region that is more densely ‘filled’ with wave branch loci. We 
make two final remarks. First, the effects at second order upon R and S in the 
presence of constant vorticity may be indicators as to the likely influence of higher- 
order terms on irrotational flow. In Doole (1994), it is shown that the introduction 
of a little vorticity can give strong corrections to the wave branch slope, causing 
rotation of the branch, especially away from the long-wave region. Secondly, the 
distinct branch behaviour in the long-wave limit may be related to stability properties 



Bifurcation in the ( R ,  S)-diagram 303 

for channel flows under a sluice as considered in Benjamin (1956) and Budden & 
Norbury (1977, 1984). Experiments indicate that if the Froude number F of the 
incident subcritical flow is greater than about 0.8, waves always appear downstream, 
despite all attempts to avoid them. Theoretically, it appears that as F -+ 1-, 
undulation is the preferred downstream profile (Budden & Norbury 1984). This 
exchange of stability between streamflow and wave corresponds to a subcritical 
depth, in our non-dimensionalization, of around 1.13. That this is close to the value 
of hD at which the wave branch stops taking a pure long-wave form may be just 
numerical coincidence. However, one should not lightly dismiss features of the (R ,  S)- 
diagram because of its role in highlighting wave transitions and changes in wave 
energetics. This is even more the case for the ‘S-increase’ fold which is visually lost 
when h, - 1.505. Turning points in bifurcation diagrams are often associated with 
changes in stability. The physical repercussions of this fold are not clear, not least 
because it is hard to judge when the feature becomes smaller than lengthscales for 
which the model [P,] has physical relevance. 

6. Conclusions 
We have presented numerical computations of the (global) wave branches (each 

characterized by a non-dimensionalized wavelength L E (0, co)) in the energy/ 
momentum flux (R, S)-diagram normalized for mass flux Q = 1. The exact equations 
of the steady ideal water wave problem [P,] were solved by a boundary-integral 
method after translation into our non-dimensionalization. The numerical (R ,  S)- 
diagram is consistent with the local mathematical arguments of 5 3, most accurately 
nearer the cusp at h,, the critical flow depth. In the figures of $ 5 ,  we saw the 
overlapping of different constant-period branches so that a single (Q, R, S)  triple 
may correspond to more than one wave, This raises the possibility of a modu- 
lational instability of water waves based on (R, S )  energetics, but any mechanism 
remains unclear. Of course, the intersections occur in a projected plane and the 
‘continuous’ bifurcation of wave branches along the subcritical branch is unfolded 
with the introduction of an L-axis (cf. the discussion of $2). This new type of ‘non- 
uniqueness’ is not associated with the (now well-understood) loss of uniqueness via 
secondary bifurcations near the premature maxima of wave properties with respect 
to wave height. 

In our view, the most important feature of the (R, S)-diagram that we have uncov- 
ered is the closeness of all of the wave branches to the subcritical branch. In addition, 
the (R,  S)-plane may well be a ‘natural’ bifurcation diagram but the transitions of 
interest, from ‘long-waves’ to ‘deep-water’ are highly compressed geometrically. Of 
course, this may reflect our particular non-dimensionalized value of flux, and thus 
the kind of ‘slice’ we are taking through multi-dimensional physical parameter space. 
Higher-order series may improve our understanding of the detail of the figures of Ij 5, 
but it seems more likely that a competing small parameter or a rescaling is required to 
unfold the normal form. However, as figure 3 shows, as S increases from 1.54 to 1.55, 
the maximum3 fold point on a branch of waves of given wavelength rapidly moves 
from large-amplitude to very small-amplitude waves. Hence, transitions at constant 
energy R that decrease S (for instance, obstructions in the flow that absorb mo- 
mentum) have complicated, but limited possibilities, and further work on stability is 
needed to resolve this. 

The investigations of $ 5  could be extended in  a number of ways. For instance, 
the known subharmonic secondary bifurcation of waves has yet to be plotted in the 
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(R ,  S)-diagram. For irrotational flow, this immediately suggests possible interactions 
between waves of distinct periods as loci spiral in parameter space. It is also of 
physical interest that other loci, such as lines of constant wave steepness are plotted 
in the (R, S)-plane. The (R, S)-diagram should also be plotted for non-zero constant 
vorticities. In this case, the global behaviour is completely open; the basic local 
bifurcation theory is more complicated (Doole 1994), and the bounds of Keady & 
Norbury (1978) are weaker. To aid such computations, one step would be to improve 
those bounds. Very recently, Benjamin (1995) has extended the methods of Keady 
& Norbury (1978) to improve the lower bound in the irrotational case so that it 
coincides with the streamflow (for monotone Stokes’ waves). The results of $ 5  show 
that refinement of the upper bound is also needed. Of course, this is more difficult 
since R and S are singular in the ‘deep-water’ limit. 
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